Stability Analysis and Control of Linear Periodic Delayed Systems using Chebyshev and Temporal Finite Element Methods

نویسندگان

  • Eric Butcher
  • Brian Mann
چکیده

This chapter provides a brief literature review together with detailed descriptions of the authors’ work on the stability and control of systems represented by linear time-periodic delay-differential equations using the Chebyshev and temporal finite element analysis (TFEA) techniques. Here, the theory and examples assume that there is a single fixed discrete delay which is equal to the principal period. Two Chebyshev-based methods, Chebyshev polynomial expansion and collocation, are developed. After the computational techniques are explained in detail with illustrative examples, the TFEA and Chebyshev collocation techniques are both applied for comparison purposes to determine the stability boundaries of a single degree-of-freedom model of chatter vibrations in the milling process. Subsequently, it is shown how the Chebyshev polynomial expansion method is utilized for both optimal and delayed state feedback control of periodic delayed systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability Analysis of a Strongly Displacement Time-Delayed Duffing Oscillator Using Multiple Scales Homotopy Perturbation Method

In the present study, some perturbation methods are applied to Duffing equations having a displacement time-delayed variable to study the stability of such systems. Two approaches are considered to analyze Duffing oscillator having a strong delayed variable. The homotopy perturbation method is applied through the frequency analysis and nonlinear frequency is formulated as a function of all the ...

متن کامل

Stability analysis of impulsive fuzzy differential equations with finite delayed state

In this paper we introduce some stability criteria for impulsive fuzzy system of differential equations with finite delay in states. Firstly, a new comparison principle for fuzzy differential system compared to crisp ordinary differential equation, based on a notion of upper quasi-monotone nondecreasing, in N dimentional state space is presented. Furthermore, in order to analyze the stability o...

متن کامل

Optimal control of parametrically excited linear delay differential systems via Chebyshev polynomials

The use of Chebyshev polynomials in solving finite horizon optimal control problems associated with general linear time-varying systems with constant delay is well known in the literature. The technique is modified in the present paper for the finite horizon control of dynamical systems with time periodic coefficients and constant delay. The governing differential equations of motion are conver...

متن کامل

Stability of a Time-Delayed System With Parametric Excitation

This paper investigates two different temporal finite element techniques, a multiple element (h-version) and single element (p-version) method, to analyze the stability of a system with a time-periodic coefficient and a time delay. The representative problem, known as the delayed damped Mathieu equation, is chosen to illustrate the combined effect of a time delay and parametric excitation on st...

متن کامل

Stability analysis of support systems using a coupled FEM-DFN model (Case study: a diversion tunnel at Lorestan dam site, Iran)

Various structural discontinuities, which form a discrete fracture network, play a significant role in the failure conditions and stability of the rock masses around underground excavations. Several continuum numerical methods have been used to study the stability of underground excavations in jointed rock masses but only few of them can take into account the influence of the pre-existing natur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008